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We investigate a gas of wet granular particles covered by a thin liquid film. The dynamic evolution is
governed by two-particle interactions, which are mainly due to interfacial forces in contrast to dry granular
gases. When two wet grains collide, a capillary bridge is formed and stays intact up to a certain distance of
withdrawal when the bridge ruptures, dissipating a fixed amount of energy. A freely cooling system is shown
to undergo a nonequilibrium dynamic phase transition from a state with mainly single particles and fast cooling
to a state with growing aggregates such that bridge rupture becomes a rare event and cooling is slow. In the
early stage of cluster growth, aggregation is a self-similar process with a fractal dimension of the aggregates
approximately equal to Df�2. At later times, a percolating cluster is observed which ultimately absorbs all the
particles. The final cluster is compact on large length scales, but fractal with Df�2 on small length scales.
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I. INTRODUCTION

Granular materials are systems of macroscopic particles
which interact only when they are in mutual contact and the
interaction is dissipative. In spite of this simple definition,
collective phenomena arising in such systems are of utmost
complexity and have inspired strongly increasing research
activities in recent years. The particular interest in granular
systems is mainly due to the fact that their importance spans
from technology and applied research to very fundamental
questions of interdisciplinary relevance. On the one hand,
storage and handling of bulk solids is among the most sig-
nificant tasks in industrial technology and still poses a large
number of unsolved problems �1–3�. On the other hand,
granular systems provide a comparatively simple, experi-
mentally accessible model for physics far from equilibrium
�4–6�. This is at the heart of self-organization and pattern
formation processes, so that granular systems have been con-
sidered as genuine model systems for structure formation on
various length scales, including the formation of planetesi-
mals from interstellar dust and the formation of planets and
stars from accretion disks �7�.

In most studies so far, models were inspired by dry granu-
lar systems, where the dissipative contact interaction consists
in the loss of a certain fraction of the kinetic energy in every
impact. Adding a small amount of liquid to the granular sys-
tem changes its properties dramatically: while dry sand can
flow freely similar to a liquid, wet sand has properties of a
plastic solid. This difference in the macroscopic behavior is
reflected in a corresponding difference in particle interac-
tions �8�. The collisions of dry granulates are typically purely
repulsive and characterized by the coefficient of restitution �
which specifies which fraction of the kinetic energy is dissi-
pated. Wet granular particles are covered by a thin liquid
film. When two particles come into contact, the films merge
and a capillary bridge is formed, exerting an attractive force
on the particles. As the particles separate from each other

again, the bridge stays intact up to a critical distance dc. At
this point the bridge ruptures �9� and a fixed amount of en-
ergy is dissipated. Thus wet granular particles are character-
ized by a hysteretic attractive interaction and a well-defined
energy which is dissipated when a capillary bridge ruptures.

The existence of a well-defined energy scale �and corre-
sponding time scale�, which is absent in dry materials, is the
essential microscopic ingredient not only of wet granulates
but also of cohesive gases. In fact the liquid bridge can be
thought of as a particular realization of a more general cohe-
sive force. A particularly important aspect of free cooling in
cohesive gases is the aggregation process which sets in,
when the kinetic energy falls below the bond breaking en-
ergy. Wet granular systems may provide a realization of vari-
ous aggregation models and so-called sticky gases �10�,
where particles move diffusively or ballistically until they
collide and get stuck to an aggregate which is thereby grow-
ing. Such models have attracted a lot of interest �10–19�, due
to a wide range of applications ranging from the formation of
dust filaments, snowflakes, and clouds to the size distribution
and impact probability of planetesimals in accretion disks.

Kinetic properties of granular gases have been discussed
mainly for dry materials. In particular, free cooling has been
studied extensively �20–24�, and it was shown that the dissi-
pative interactions are responsible for many phenomena, un-
expected from the kinetic theory of molecular gases: The
particles’ velocities are not distributed according to a
Maxwell-Boltzmann distribution �25�, equipartition does not
hold �26–28�, a spatially homogeneous state is generically
unstable �29�, and linear and angular motion are correlated
�30�.

Much less is known about wet granular media, which
have been addressed only recently �8,31–37�, focusing on
nonequilibrium phase transitions �37�, the equation of state
�36�, agglomeration �31,32,38�, shear flow �33�, and cooling
in one dimension �34,35�.

Structure formation in wet granulates during free cooling
has hardly been studied yet and is the focus of our paper
which is organized as follows. In Sec. II we present the
model and discuss the decay of the average kinetic energy in
Sec. III. Aggregation is discussed in Sec. IV, before we*ulrich@theorie.physik.uni-goettingen.de
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present conclusions in Sec. V. A short summary of our results
has appeared in �39�.

II. MODELS

In the present article, we are interested in the zero-gravity
free cooling dynamics of wet granular gases. We assume the
particles to be covered by a thin liquid film, as it is the case
if the liquid completely wets the particle material �40�. The
particles approach freely until these surface films come into
contact. The liquid then rapidly accumulates around the con-
tact due to the interfacial forces. A capillary bridge forms at
the contact, exerting an attractive force on the grains due to
its negative Laplace pressure. This liquid bridge is stretched
but stays intact �or even continues to grow� as the particles
move apart. The attractive force thus remains until a certain
critical separation sc is reached, where the liquid neck be-
comes unstable and ruptures. As mentioned above, the hys-
teretic formation and rupture of the bridge gives rise to a
characteristic loss of energy, �E, which depends upon the
thickness of the liquid film wetting the grains.

In order to design a suitable model, a few words on the
details of this process are in order. The formation of capillary
bridges is quite fast in real systems. Between typical grains
of one millimeter diameter it takes less than a millisecond. It
is clear, however, that this formation cannot in general be
considered instantaneous if the velocity of the impacting
grains, vi, is large. If the time scale of the impact process,
which may be written as sc /vi, is of the same order or even
smaller than the time of capillary bridge formation, the ac-
cumulated liquid volume of the bridge, and hence �E, will
be smaller than for slow impacts. However, this will not
greatly affect the main features of the wet system, in particu-
lar as to its characteristic difference from the dry granulate.
In order to see that, we compare the effective restitution
coefficient of the dry and of the wet system. This is shown in
Fig. 1, where the restitution coefficient for the dry system is
shown as the dotted curve. It tends to be mildly depending
on impact energy �4�, Ei, with a negative slope throughout.
The effective restitution coefficient of the wet system, �eff

=�1−�E /Ei, is shown as the solid curve, assuming constant
�E. In strong contrast to the dry system, it has a zero at
�E /Ei=1, and a markedly positive slope. This illustrates the
dramatic difference between these two systems. The dashed
line qualitatively accounts for the effect of finite formation
time of the capillary bridge. Since �eff must stay below one,
the difference between the solid and the dashed curve is very
limited, and the qualitative picture concerning the compari-
son of dry and wet granular gases remains unchanged.

Our system consists of N identical and spherical particles
with diameter d and mass m in a three-dimensional cubic
volume V=L3. The particles have a hard-core interaction,
such that two particles are reflected elastically, if their cen-
ters of mass reach the hard-core distance, which is the par-
ticle diameter d.

To account for the liquid film, a liquid bridge is allowed
to form between a pair of particles if they come close enough
�“close enough” is specified later�. When these particles are
moving apart and their distance exceeds the bond breaking
distance dc, the liquid bridge will break and a fixed amount
of kinetic energy �E is dissipated; thereby, momentum is
conserved and the relative velocity vrel changes to vrel� ac-
cording to

�

2
vrel�2 =

�

2
vrel

2 − �E �1�

with the reduced mass �=m /2. If, however, the relative ki-
netic energy is smaller than �E, the particles are elastically
reflected toward each other. In this case the two particles
oscillate between d and dc, until a collision with a third par-
ticle or a wall supplies enough energy to break the liquid
bridge.

The effect of the capillary force, which is present in real-
ity for distances up to dc, is thus solely modeled by the
energy loss which occurs at the distance dc. This has been
shown before to be a very good approximation �37�, and
enables event-driven simulations as discussed below. For the
formation of the liquid bridge, we distinguish between two
models:

In the thin film model, the liquid bridge forms when the
particles touch, i.e., the distance of their centers is equal to d.
This model assumes that the liquid film covering the par-
ticles is infinitesimally thin and the capillary bridges form a
thin liquid neck, which breaks off at the critical distance dc.

In the thick film model, a liquid bridge forms as soon as
particles come closer than the critical bond breaking distance
dc. This model assumes that the outer diameter of the liquid
film is dc and its shape stays spherical and is not deformed
by the particles. Although this may seem unphysical, we in-
clude this case in our study because similar assumptions
have been used in many simulation studies in earlier articles.
As it will turn out, the differences in most of the results are
only minute. The two models are illustrated in Fig. 2.

In general, there is some energy being transferred to the
atomic degrees of freedom of wet grains as well. In this
paper, we are going to neglect this dissipation mechanism
because it is usually small as compared to the energy loss
due to the breaking of capillary bridges, especially if the

FIG. 1. Restitution coefficients for dry �dotted� and wet �solid
and dashed� granular systems, plotted vs the impact energy in units
of the wet energy loss, �E. The main feature in the wet case is the
zero at Ei=�E, which is unchanged if the finite formation time for
capillary bridges is taken into account �dashed curve�. The horizon-
tal line �=1 corresponds to the limit of fully elastic spheres.
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granular temperature is small. However, we want to point out
that such a dissipation mechanism can easily be incorporated
in the simulations, replacing the elastic reflection by incom-
plete normal restitution. We restrict ourselves here to per-
fectly smooth particles, such that translational and rotational
motion are decoupled. Furthermore, we investigate free cool-
ing only, so no gravity is present, and no energy is injected
into the system.

The particular way of accounting for the liquid film used
in these models makes it possible to use an event-driven
simulation scheme. The possible events are the reflection of
the particles at the hard-core distance d and the crossing of
the bond breaking distance dc. As mentioned above, we have
previously compared event-driven simulations of the wet
system with full molecular dynamics simulations integrating
the equation of motion �37�. We found good quantitative
agreement in the results of both methods, justifying the
event-driven approach we chose exclusively for the present
study.

We use dimensionless units such that �E=1, particle
mass m=1 and particle diameter d=4. The bond breaking
distance is chosen as dc=1.07d, unless noted otherwise, and
volume fraction, �=�d3 /6·N /V, is varied from ��0.06%
up to 15.6%. We use periodic boundary conditions in the x
and y direction and hard walls in z direction. The hard walls
are completely elastic and do not exert capillary interactions
with the particles.

III. COOLING DYNAMICS

We define the granular temperature T= 1
3N�i=1

N mvi
2 and in-

vestigate its decay in time from a given initial value T0
��E. In all our simulations we choose T0=45�E. Simple
arguments can be used to derive an analytical form of the
temperature decay. In each collision a capillary bridge rup-
tures with probability Pbb, giving rise to dissipation of a
fixed amount of energy, the bond breaking energy �E. Par-
ticles collide with frequency fcoll, so that the average loss of
energy per unit time is given by:

3

2

dT

dt
= −

1

2
fcoll�EPbb. �2�

The factor 1
2 takes into account that two particles are in-

volved in one bond rupture.

A. Early stage of cooling

In the early stage of cooling, the average kinetic energy
per particle is much larger than the bond breaking energy, so
that Pbb�1 and almost every collision gives rise to dissipa-
tion by �E. For a dilute gas, the collision frequency

fcoll = 4g�d��n� T

�m
�3�

is well established, with the particle density n=N /V and the
pair-correlation function at contact g�d�= �2−��

2�1−��3 �e.g., �4��.
The two models differ only in the cross section � �see, Fig.
2�, which is given by �=d2� in the thin film model and �
=dc

2� in the thick film model.
The only temperature dependent quantity remaining on

the right-hand side of Eq. �2� is the collision frequency,
fcoll��T from Eq. �3�, giving rise to the following simple
equation:

dT

dt
� − �T , �4�

which is solved by T�t���t− t0�2. Inserting the prefactors and
the initial value T�0�=T0, one obtains, similar to Haff’s law
�41�, an analytical form of the decay of the temperature:

T�t� = 	T0�1 − t/t0�2 for t 	 t0

0 for t 
 t0

 �5�

with a characteristic time scale

t0 =
3��mT0

2g�d��n�E
. �6�

Note that, in this simplified model, the assumption that
every collision causes an energy loss �E gives rise to a time-
scale t0 after which all energy is dissipated. Even though this
assumption does not hold for all times in the simulation
�since the bonds do not break anymore if the relative kinetic
energy is too small�, the time-scale t0 has a clear physical
relevance. It sets the time after which the temperature is
comparable to the bond breaking energy �E and after which
persistent clusters will form. In Fig. 3 the evolution of the
granular temperature T from the simulation is compared to
Eq. �5� for different volume fractions the thin and thick film
model. The difference of the two models is solely due to
different scattering cross-sections.

In the simplified cooling law Eq. �5�, the volume fraction
only enters into t0. Hence we try to superimpose the data by
scaling time with t0. As can be seen in the inset of Fig. 3, the
data obey the expected scaling well, except for the long time
limit, which has different asymptotic behavior and is treated
in the next section.

FIG. 2. �Color online� Illustration of the thin film model and
thick film model. In the thick film model, the liquid bridge forms as
soon as the bond breaking distances dc overlap. The same initial
configuration in the thin film model does not create a liquid bridge,
since the hard cores of the particles do not touch. Thus, the particles
just pass by.

DILUTE WET GRANULAR PARTICLES: NONEQUILIBRIUM … PHYSICAL REVIEW E 80, 031306 �2009�

031306-3



B. Late stage of cooling

In the late stage of aggregation, when the system is
strongly aggregated, it becomes very unlikely that a capillary
bridge ruptures. Hence we observe a very slow time evolu-
tion of our system. The slow decrease in the temperature can
be understood with simple arguments. The probability Pbb to
break a bond is given by the probability to find a kinetic
energy larger than �E:

Pbb =� d3v��mv2/2 − �E�w�v� . �7�

We approximate the velocity distribution w�v� by a Max-
wellian

w�v� = � m

2�T�t�
3/2

e−mv2/�2T�t�� �8�

and evaluate the above integral in the limit T�t� /�E→0. The
probability to break a bond becomes exponentially small in
that limit:

Pbb = �4�E

�T
1/2

e−�E/T. �9�

The decrease in kinetic energy, as given by Eq. �2�, is now
dominated by the probability to break a bond. The collision
frequency fcoll is not known for the clustered state, but is
expected to be proportional to T1/2. Using Eq. �9� and fcoll
�T1/2 in the rate Eq. �2� yields:

dT

dt
= − e−�E/T. �10�

The prefactor  is determined by the precise form of the
collision frequency. Separation of variables can be used to
integrate Eq. �10�

�
T1/�E

T/�E

dx e1/x = − �t − t1� �11�

with the initial value T1=T�t1�. In the asymptotic limit T
→0 and T1→0 with T�T1, one finds a logarithmically slow
time decay of the temperature

T

�E
�

1

ln�t�
�12�

which is due to the very low probability to break a bond, Eq.
�9�. This is in strong contrast to the algebraic time decay
observed for dry granular systems with coefficient of restitu-
tion ��1 �4�.

In Fig. 4, the full solution Eq. �11� is compared to the
simulation data, showing good agreement. The unknown
prefactor  is a fit parameter. It is noteworthy that for all
densities, the temperature seems to approach a universal
curve as t→�.

C. Partitioning of the energy into translational, rotational,
and internal degrees of freedom

After the time t0 has passed, stable clusters emerge. For
the definition of a cluster, we define particles as neighbors, if
a bridge is formed and the relative kinetic energy is not suf-
ficient to break it. This makes sure those particles which are
just “passing by,” are not considered neighbors. A cluster is a
set of particles connected through this neighbor relationship.
Hereby we refer to the cluster mass m as the number of
particles a cluster contains. Clusters defined in this way are
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FIG. 3. �Color online� Decay of the granular temperature T for
the thick film model ��� and the thin film model ��� for volume
fractions �=1.95% �left� and �=0.24% �right�. The number of par-
ticles is N=262144. The corresponding solid lines show the analytic
form Eq. �5� with a decay to zero at time t0, given in Eq. �6�. At that
time, the temperature of the simulated granulate shows a rapid tran-
sition to a value below the bond breaking energy �E=1. In the
inset, temperature data of the thick film model for a range of � from
0.12% �black� to 15.6% �yellow/light gray� are plotted versus
scaled time t / t0, such that data for different volume fractions col-
lapse onto a single curve.
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FIG. 4. �Color online� Asymptotic time dependence of the tem-
perature for volume fractions �from left to right� �=15.6%, 7.81%,
3.90% ,1.95% ,0.98% ,0.49% ,0.24% ,0.12% ,0.061%. The number
of particles is N=262144, except for the third curve ���, which has
N=8192 particles and is therefore somewhat noisy, but shows about
two more decades in time; data �dots� in comparison to the analyti-
cal results �lines�
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not truly stable. Particles belonging to the cluster are occa-
sionally kicked out, if hit by a very energetic particle.

For a more detailed understanding of the system, we in-
vestigate the cooling dynamics on the cluster level, and de-
termine how energy is partitioned among the degrees of free-
dom. We split the total temperature T into three constituents,
the translational temperature defined via the center-of-mass
velocities of the clusters, the rotational temperature defined
via the angular momenta of the clusters, and the internal
temperature describing the relative movement of the particles
inside a cluster. These three temperatures are defined as fol-
lows.

Our definition of neighborhood relations gives rise to ncl
distinct clusters numbered by i=1, . . . ,ncl. We denote by Ni
the i-th cluster with mi particles. Its center-of-mass position
and velocity are given by:

Ri =
1

mi
�

��Ni

r� and Vi =
1

mi
�

��Ni

v�. �13�

Note that single particles with mi=1 are also considered as
clusters.

The center-of-mass movement of each cluster has f trans,i
=3 translational degrees of freedom, so that the total number
of translational degrees of freedom of these clusters is simply
3ncl. Homogeneous cluster translations are thus characterized
by the translational temperature

Ttrans ª
2

3ncl
�
i=1

ncl mi

2
Vi

2. �14�

Analogously, the rotational temperature describes the en-
ergy in homogeneous cluster rotations. The angular momen-
tum, Li, of cluster i is given in terms of the relative particle
positions r̃i,�=Ri−r� and velocities ṽi,�=Vi−v�

Li = �
��Ni

r̃i,� � ṽi,�. �15�

The rotational energy of cluster Ni with mi
2 is thus given
by

Erot,i =
1

2
LiI=i

−1Li, �16�

where the moment of inertia tensor I=i is defined in the usual
way. The case mi=2, requires special treatment, since the
inertia tensor is singular. The rotational energy of a dimer
can be easily calculated to Erot,i= �v1−v2��

2 /4, where �v1
−v2�� denotes the relative velocity perpendicular to the axis
of the dimer. The rotational temperature is thus

Trot ª
2

�i=1
ncl f rot,i

�
i=1

ncl

Erot,i, �17�

with f rot,i=2 for dimers and f rot,i=3 for larger clusters.
All the left-over kinetic energy Eint describes the relative

movement of particles inside a cluster and contributes to the
internal temperature. Each cluster has a total of 3mi degrees
of freedom, so that the remaining number for internal de-
grees of freedom is f int,i=3mi− f trans,i− f rot,i. The internal tem-
perature Tint is:

Tint ª
2

�i=1
ncl f int,i

�
i=1

ncl

Eint,i. �18�

Figure 5 �top� shows how the total of 3N degrees of free-
dom divides up into translational, rotational, and internal de-
grees of freedom. The corresponding temperatures are shown
in the lower half of the figure. As one might expect, for t
� t0 almost all degrees of freedom are translational, since
most clusters are just single particles, and Ttrans�T. Keeping
in mind that two particles are only defined as neighbors if
their relative velocity is not sufficient to break the bond, only
stable clusters �mostly dimers� enter the internal and rota-
tional temperatures, and therefore Trot ,Tint�

2
3�E= 2

3 for
t / t0�1 �42�.

In the transitional regime t� t0, when the number of in-
termediate size clusters increases, the rotational degrees of
freedom become important. Larger objects can have higher
rotational energies without rupture �43�, therefore the grow-
ing clusters obtain energy from caught particles, and thus Trot
increases until reaching the value of Ttrans. After that, the
energy of the incoming lumps is not sufficient to increase Trot
any further.

In contrast to the homogeneous cluster rotations, the in-
ternal degrees of freedom which have higher energies than
�E will in most cases result in a bond rupture, independent
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FIG. 5. �Color online� Top: Division of the total 3N degrees of
freedom into the translational, rotational, and internal parts, depen-
dent on time. Bottom: Evolution of the total ��, black�, transla-
tional ��, green�, rotational ��, red�, and internal ��, blue� granu-
lar temperatures. Data for N=262144 particles and volume fraction
�=1.95% are shown; the behavior is qualitatively the same for all
investigated system sizes. The horizontal line at 2/3 corresponds to
the bond breaking energy.
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of the cluster size. Therefore, Tint decreases monotonically.
At late times t� t0, large clusters have formed, thus almost
all degrees of freedom are internal and T�Tint.

IV. AGGREGATION

When the average kinetic energy per particle is compa-
rable to the bond breaking energy, t� t0, the system starts to
form aggregates, which seem to grow in a self-similar pro-
cess. In the following we are going to analyze these aggre-
gates and compare them to cluster-cluster aggregation �44�
models. As time proceeds, larger and larger clusters are
formed. We observe a spanning or percolating cluster for all
finite densities and ultimately all particles and clusters have
merged into a single cluster.

Figures 6 and 7 show snapshots of a system at t=12t0 and
t=52t0 with small volume fraction, �=0.48%. At the smaller
time the system is not yet percolating, even though rather
large clusters have already formed, the largest one �in gray�

contains 22% of all particles. The second snapshot, taken at a
much longer time, shows a spanning cluster. At such large
times the average kinetic energy is much smaller than the
bond breaking energy �T�0.06�E�, so that bonds almost
never break up. The cluster shown is already well beyond the
critical time for percolation with 99% of the particles in the
cluster.

Figure 8 shows the evolution of the cluster mass distribu-
tion Nm�t�, which is the number of clusters containing m
particles at time t. One can clearly see that after some time,
t�2.5t0, which depends on volume fraction, the largest clus-
ter emerges from the rest of the distribution. For all volume
fractions a gelation transition was observed at the percolation
time tc
 t0. The critical behavior of the gelation transition is
still controversial. Since aggregation is a nonequilibrium
process, there is a priori no reason that it should be in the
same universality class as the corresponding equilibrium per-
colation transition. Yet there is some evidence in favor of this
conjecture. Gimel et al. �45� observe a crossover from self-
similar growth at small times and volume fractions—called
the flocculation regime—to the percolation regime around tc.
In the latter they observe critical exponents as in standard
percolation theory. Kolb and Herrmann �46� on the other
hand obtain values for the fractal dimension of the percolat-
ing cluster, distinct from percolation theory as well as from
flocculation theory. Both studies refer to diffusion limited
cluster-cluster aggregation.

In this paper we do not analyze the gelation transition in
detail but defer such a discussion to future work. Instead we
investigate two regimes in detail in the following:

�a� The self-similar growth process, or flocculation re-
gime, which is present for small times and volume fractions.

�b� The properties of the final cluster which emerges,
when �almost� all particles have aggregated to form one large
cluster.

FIG. 6. �Color online� Snapshot of the system with volume frac-
tion �=0.48% and N=262144 particles taken at time t�12t0; the
largest cluster �gray, bottom left� contains 22% of the particles.
Particles of the same cluster have the same color shade.

FIG. 7. Same as Fig. 6 for t�52t0; the largest cluster contains
99% of the particles.
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FIG. 8. �Color online� Histogram of the cluster mass distribution
dependent on time, for volume fraction �=3.9% and N=262144.
The number of clusters at the respective time and size is color
coded on a logarithmic scale so that the single largest cluster is
visible. At t�2.5t0 one can see the large cluster emerging, clearly
distinguishable from the rest of the distribution.
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A. Self-similar growth

1. Fractal dimension of the aggregates

A central quantity of aggregation models is the fractal
dimension of the aggregates. It is usually determined from
the radius of gyration as a function of cluster mass. We con-
sider a cluster of m particles with positions �r1 , . . . ,rm� and
define its radius of gyration by �see, e.g., �47��

rg
2�m� =

1

m
�
i=1

m

�ri − r�2 with r =
1

m
�
i=1

m

ri. �19�

If the clusters are fractal we expect a scaling relation for
large m of the form

rg � m1/Df �20�

which yields the fractal dimension Df. This method is com-
monly used in aggregation models, where particles move dif-
fusively, ballistically, or are interacting and stick to the ag-
gregate once they touch it �14,16,17,48�.

In Fig. 9 we show the radius of gyration for a system of
262 144 particles at volume fraction �=1.95%. Several
snapshots of the ensemble of growing clusters have been
taken at times t0� t� tc with the percolation time tc, when a
spanning cluster is first observed. The data scale well accord-
ing to Eq. �20�, some scatter is observed for the largest
masses, corresponding to times close to the percolation tran-
sition.

In contrast to aggregation models, where the clusters are
static and do not break up, we occasionally do observe the
breaking of bonds. In addition there are internal deforma-
tions of the clusters during growth, so that the fractal dimen-
sion could depend on time. We have therefore checked the
relation between m and rg�m� for many instances of time and
show the fractal dimension as a function of time in the inset

of Fig. 9. As can be seen from the figure, there is no system-
atic dependence on time and the fractal dimension is close to
Df=2.

2. Cluster size distribution

All information about the connectivity of the clusters is
contained in the cluster size distribution Nm�t�, the number of
clusters of size m at time t. In Fig. 10 we show Nm�t� for a
system with �=1.96% and N=1 048 576. The time interval
has been chosen such that t0� t�2t0� tc�4t0 �for this vol-
ume fraction�. In this time interval the mean cluster mass
increases roughly by a factor of 30.

It has been suggested �e.g., �48�� that for aggregating sys-
tems the mass distribution evolves toward a self-preserving
scaling form, independent of the initial distribution:

Nm�t� = m−�f�m/m̄�t�� , �21�

where the time dependence is only contained in the mean
cluster mass

m̄�t� =
�m=1

� m2Nm�t�
�m=1

� mNm�t�
. �22�

This scaling form has been applied successfully to various
aggregating systems �12,13,15,19,48–50�, involving fractal
as well as nonfractal objects. Mass conservation requires �
=2 �48�.

We plot in Fig. 11 the scaling function f�m / m̄�
=Nm�t�m2 for the same data sets as in Fig. 10. We expect
scaling to hold only in the aggregation regime, i.e., for times
not too close to tc, where the system gels �see Sec. IV A 3�.
Hence we restrict ourselves in Fig. 11 to times t0� t�2t0.
We have also left out the data points for m=1, i.e., clusters
consisting of single particles. As can be seen from Fig. 11 the
data scale very well. Deviations occur only for times close to
the percolation transition �not shown here�, where they
should be expected.

3. Number of clusters

Another characteristic of a realization of clusters is simply
the total number of clusters ncl�t�=�m=1

� Nm�t�, which de-
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FIG. 9. �Color online� Radius of gyration as a function of cluster
size for a system of 262 144 particles at volume fraction �
=1.95%; different colors/shades correspond to simulation times be-
tween t0 �yellow/light gray� and 4t0� tc �black�; The slope of the
solid line corresponds to Df=2; inset: fractal dimension as a func-
tion of time, extracted from the slope of the curves in the main
figure.

1 10 100 1000
cluster mass m

10�4

10�3

10�2

0.1

1

10

102

103

104

105

Nm�t�

1 1.2 1.4 1.6 1.8 2
t�t0

0
100
200
300
400
500
600
700

m
ea

n
cl

us
te

r
m

as
s

m���

time

FIG. 10. �Color online� The cluster mass distribution Nm�t�. The
different graphs represent different times, which are increasing from
top to bottom �left side of the graph�. The inset shows how the
mean cluster mass increases during the investigated time period.

DILUTE WET GRANULAR PARTICLES: NONEQUILIBRIUM … PHYSICAL REVIEW E 80, 031306 �2009�

031306-7



creases as aggregation proceeds. As long as the system is in
the scaling regime �i.e., relation Eq. �21� is fulfilled�, the
mean cluster mass, m̄�t� and the number of clusters are sim-
ply related: m̄�t��ncl

−1. However, as mentioned above, the
scaling relation Eq. �21� only holds in the aggregation re-
gime and is expected to break down as the percolation tran-
sition is approached. At that point, m̄ should diverge due to
the formation of a spanning cluster. On the other hand, there
is still a large number of smaller clusters coexisting with the
macroscopic cluster, so that ncl /N remains finite at the per-
colation transition.

The aggregation of particles to larger objects has been
investigated for various ballistic aggregation models
�10,13,18,51�, where spherical particles of mass m=1 and
diameter d=d0 move ballistically, until two of them collide
to form clusters irreversibly. In a particularly simple model,
one assumes that two colliding particles form one larger
spherical particle with conserved momentum and a mass m
equal to the sum of the two particles masses, so that m is
always equal to the number of initial particles contained in a
given cluster. For spatial dimension D, the diameter in-
creases such as d=m1/Dd0, assuming the particles to be com-
pact spheres which conserve volume when merging. For this
model, a mean-field theory �13� and simple scaling argu-
ments �10,18� yield the dependence of the expected average
mass m̄ on time like m̄� t� with an exponent �=2D / �D+2�
�assuming t0=0�.

Since the aggregating clusters in our system are not com-
pact, but fractal objects with fractal dimension Df, the as-
sumption for the diameter d�m1/D does not hold and must
be changed to d�m1/Df. With this assumption, we follow the
scaling arguments of Trizac et al. �18� and find the scaling
relation between m̄ and t.

We assume that the number of clusters per volume, ncl, is
reduced by one whenever two clusters collide:

dncl/dt � − fcollncl. �23�

The collision frequency �4� is approximately given by fcoll
�dD−1nclv with d�rg the linear dimension of the cluster and

v its typical velocity. The average momentum should scale as
p�m1/2 �18�, and therefore

v = p/m � m−1/2 � ncl
1/2. �24�

Plugging in all these scaling relations as well as m�rg
Df, one

obtains:

dncl

dt
� − ncl

2 vdD−1 � − ncl
5/2−�D−1�/Df , �25�

which is solved by

ncl � �t − t��−2Df/�3Df−2D+2�, �26�

where the integration constant t� is the onset of cluster
growth. In our context t�� t0 �52�. This implies the following
growth law for the mean cluster mass in the scaling regime:

m̄ � �t − t��� with � =
2Df

3Df − 2D + 2
, �27�

which generalizes the result for compact objects, �=2D / �D
+2� with D=Df to fractal ones with D�Df.

In Fig. 12 we show how the number of clusters decreases
over time as larger and larger aggregates form for t
 t0.

The inset of Fig. 12 investigates the scaling behavior Eq.
�26�, with the origin of the time axis shifted to the transition
point t�. One can see that the slope of �=2, obtained from
Eq. �27� for D=3 and Df=2 is in good agreement with the
simulation.

B. Properties of the asymptotic cluster

The fractal dimension of the largest cluster—well beyond
the percolation transition for most volume fractions—will be
the main focus of this section. In particular we determine its
fractal dimensions and coordination numbers.

1. Fractal dimension from radius of gyration

One way to determine the fractal dimension is the radius
of gyration, as was done in Sec. IV A 1 for aggregates. Here,
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FIG. 11. �Color online� Rescaled cluster size distribution
f�m / m̄�=Nm�t�m2 from Eq. �21� versus the normalized cluster mass
m / m̄. The color coding as in Fig. 10 is used.
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however, we only have one large cluster and have to find a
way to obtain the function rg�m� as a function of cluster size
m. We implement this in following way: starting from a ran-
dom particle of the cluster, we mark all particles that can be
reached through i neighbor-to-neighbor steps. Thus, for ev-
ery i, we get a partial cluster with m�i� particles and radius
of gyration rg�i�, which yields the scaling relation rg
�m1/Df and the fractal dimension Df. For good statistics, we
repeat this procedure 100 times �each with a different initial
particle� and average over the obtained values of rg. Note
furthermore that the procedure takes care that no particle is
marked a second time, in order to make sure that one does
not go through the cluster several times because of the peri-
odic boundary conditions.

In Fig. 13 we show the results of this procedure for the
radius of gyration rg as a function of m for different densi-
ties. For high volume fractions we are well beyond the per-
colation transition and hence expect Df=3 on the largest
length scales of the cluster. This is clearly seen in Fig. 13,
e.g., for �=15.6% and 103�m�105. On smaller length
scales, however, we find a fractal dimension Df�2. For
smaller volume fractions, the crossover to Df=3 happens at
larger masses and hence the “interior” region extends to
larger scales.

2. Fractal dimension from box counting algorithm

To further investigate the Hausdorff dimension of the
largest cluster at intermediate length scales, we use the box
counting algorithm �53,54�. The system is divided into sub-
boxes of edge length Lbox. Then each box which contains or
hits at least one particle is marked. In this way, we find the
number of boxes Nbox necessary to cover the whole cluster.
This number should scale with Lbox such as

Nbox � Lbox
−Df , �28�

with the Hausdorff dimension Df.

On length scales much smaller than the particle diameter,
Lbox�d, the system obviously behaves three dimensionally.
In this regime, the number of filled boxes Nbox is just the
volume fraction � times the total number of boxes Nbox,tot
=L3 /Lbox

3 , therefore:

Nbox =
�L3

Lbox
3 . �29�

Since our system is finite and contains a system-spanning
cluster, the scaling behavior on large length scales Lbox�L
should also be three dimensional. On this length scale, al-
most all the boxes should be filled, so that

Nbox =
L3

Lbox
3 . �30�

In particular, the relation must include the point �Lbox,Nbox�
= �L ,1�, since a box of the system size includes all particles
and will certainly be marked.

Only in the regime between these two limiting cases is it
possible to observe the fractal dimension with the box count-
ing method. Comparing Eqs. �29� and �30� shows that the
interesting range is proportional to �log ��, which only de-
pends on the volume fraction, but not on the particular
choice of the system size. A schematic plot is given in Fig.
14 where the number Nbox of boxes containing particles is
plotted against the edge length Lbox of a box.

For numerical reasons, it is very tedious to observe the
expected slope of −3 for small Lbox, because of the vast
amount of boxes to account for. Since this regime is not
relevant anyway, it has only been investigated exemplarily
and is reached for Lbox�0.03d. For all other runs we sim-
plify the algorithm and only use the centers of the particles,
i.e., a box is only marked, if a particle center is inside. With
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FIG. 13. �Color online� Radius of gyration dependent on the
mass of the partial cluster at simulation time t�27t0. The particle
number is fixed N=262144 and the volume fractions are �from bot-
tom to top� �=15.6% ,7.81% ,3.90% ,1.95% ,0.98% ,0.49%. The
lines along the data points are the respective fits. The outer solid
lines have slopes 1/2 �top� and 1/3 �bottom� corresponding to fractal
dimensions of 2 and 3, respectively.

FIG. 14. Schematic double logarithmic plot of the box size Lbox

versus the number of boxes Nbox of that size needed to cover the
cluster. The negative slope is the fractal dimension. We expect three
scaling regions: For small and large Lbox, the system should behave
three dimensionally, and the region in between yields the nontrivial
fractal dimension. If only the particle centers are considered, the
algorithm simply counts the number of particles in the cluster for
Lbox�d resulting in a horizontal line �dotted line�.
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this definition the number of boxes needed to cover the sys-
tem for small box sizes Lbox�d is just the particle number N,
resulting in a horizontal line on the left side of the graph,
instead of the slope −3 �dotted line in Fig. 14�.

Figure 15 �top� shows the outcome of the box counting
algorithm, at a time t�27t0, where roughly all particles are
inside the largest cluster. It yields the relation between the
box size Lbox and the number of boxes of that size, needed to
cover the cluster. The slope of that curve is the negative
fractal dimension. The results for different system sizes but
with the same volume fraction are presented. As proposed,
for all system sizes, there is a cross-over point Lco, at which
the slope changes. On length scales between d and Lco, the
fractal dimension is roughly 2 �the fits yield values between
1.92 and 2.03�. Above Lco the fractal dimension has a trivial
value of about 3 �fit values between 2.95 and 3.00�, which
means that on these large length scales all the boxes are filled
and is therefore an indication that the cluster is system-
spanning.

In the lower half of Fig. 15 we show the number of boxes
normalized by the cluster mass. The data collapse well onto
a single curve, obviously with the same slopes. Here one can
see very well that for systems with the same volume fraction,

the slopes as well as the cross-over point do not depend on
the absolute system size.

Results of the box counting algorithm for different densi-
ties are presented in Fig. 16. We only include densities for
which a spanning cluster has developed. The slopes of −2
and −3 in the two scaling regions are not affected by the
volume fraction �, but the size of the nontrivial region �with
Df�2� is seen to increase significantly as the density de-
creases. Even for the lowest density, the size of the scaling
region is less than two decades, which makes it difficult to
extract precise values for the fractal dimension. For the three
most dense systems, the scaling region is less than one de-
cade. As discussed earlier, this is an intrinsic feature of the
“high” density systems, which cannot be resolved by taking
larger systems �N ,L→� with constant ��. As the inset
shows, we can collapse all data on a single curve by rescal-
ing Nbox with �−2 and Lbox with � in agreement with the
dependence of the crossover length on �log ��.

3. Coordination number

Given the definition of a neighborhood relation �two par-
ticles are neighbors if they have built a bridge and their ki-
netic energy is not sufficient to break it�, we can extract the
average number of neighbors of a particle, i.e., the average
coordination number. In Fig. 17 we show histograms for the
coordination number in the percolating cluster for two differ-
ent bond breaking distances. As one would expect, these dis-
tributions are rather broad with coordination numbers be-
tween one and thirteen. The smaller bond breaking distance
�left� gives rise to a more asymmetric distribution with more
weight for smaller coordination numbers.

In Fig. 18, we show the time evolution of the average
coordination number for different bond breaking distances
dc. After a strong increase at the time t0, the coordination
number continues to grow slowly. This slow increase is
strongly suppressed in the thin film model �right� as com-
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and volume fraction �=1.95% for the box counting algorithm; par-
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pared to the thick film model �left�. Within the thin film
model the slow growth with time is further suppressed for
decreasing bond breaking distance dc.

As one can see in Figs. 17 and 18, the coordination num-
ber becomes smaller for smaller dc. This is reasonable, be-
cause the particles can more easily collect neighbors for
higher dc. As dc→d the average coordination number of the
thin film model approaches 6, which is the isostatic value.
This is demonstrated in the right half of Fig. 19, where we
plot the asymptotic coordination number as a function of dc.
Here the asymptotic value is taken, when T�0.06�E for the
first time.

Naively one might expect that the increase in the coordi-
nation number with larger dc is caused by a compactification
and therefore accompanied by an increase in the fractal di-
mension. However, as can be seen in the left part of Fig. 19,
there is no significant influence of dc on the development of
the fractal dimension. Thus, we conclude that this compacti-
fication is mostly occurring on the single particle length scale
and therefore increasing the average coordination number,
but not influencing the structure on larger length scales �55�.

V. CONCLUSIONS

We have analyzed a simple model of a wet granulate al-
lowing for large scale event-driven simulations. A central
feature of wet granulates is the existence of an energy scale
�E associated with the rupture of a capillary bridge between
two grains. This energy scale has important consequences
not only for the phase diagram �37� but also for the free
cooling dynamics investigated in this paper. The most impor-
tant feature is a rather well defined transition at a time t0,
when the kinetic-energy T of the particles becomes equal to
�E.

For t� t0 the particles are energetic enough to supply the
bond breaking energy �E, so that very few collisions result
in bound pairs and most particles are unbound. Cooling is
very effective in this regime, but drastically different from a
dry granulate. Whereas in dry granulates the dissipated en-
ergy is proportional to the energy of the colliding particles, in
wet granulates the dissipated energy is �E, independent of

the energy of the colliding particles so that Ṫ��T. Conse-
quently Haff’s law does not hold and is replaced by T�t�
=T�0��1− t / t0�2 for t� t0. The simulations are in very good
agreement with this cooling law for t� t0.

For t
 t0, the kinetic energy of the particles is too small to
provide the bond breaking energy, so that larger and larger
clusters form. We call this regime the aggregation regime
and analyze the properties of the aggregates. For not too long
times and sufficiently small volume fractions, we observe
flocculation characterized by nonoverlapping, weakly inter-
acting clusters. The fractal dimension of the aggregates is
approximately Df=2. The cluster size distribution follows a
simple scaling form, Nm�t��m−2f�m / m̄�t��, which has been
applied successfully to different aggregation models before.
The increase in the typical cluster size m̄�t� can be under-
stood by a simple scaling analysis: Assuming that clusters
irreversibly stick together when they hit upon each other and
that their radius r grows with the number of particles m like
rDf �m, yields a cluster growth m̄� t2Df/�3Df−2D+2�. This scal-
ing relation shows good agreement with the simulation for
fractal dimension Df=2.

At larger times, a spanning cluster forms and a gelation
transition is observed for all finite volume fractions. At the
gelation transition a spanning cluster coexists with many
small ones, whereas at very long times almost all particles
are connected to one large cluster. On the largest length
scales the final cluster is no longer a fractal but compact, as
one would expect for a spanning cluster in the percolating
phase. On smaller length scales, however, we find fractal
structures with Df�2. The range where a nontrivial fractal
dimension can be observed increases with decreasing density
as �log ��.

Even on the longest time scales, the temperature contin-
ues to decay. In this regime the limiting process is the break-
ing of a bond. The probability for this process becomes ex-
ponentially small Pbb���E /Te−�E/T as the temperature goes
to zero. Hence the cooling law for high temperatures is re-

placed by Ṫ�e−�E/T in very good agreement with the data.
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FIG. 17. Histogram of the coordination number for two different
bond breaking distances dc=1.01d �left� and dc=1.07d �right�; for
both plots N=262144 and �=1.95%.
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Several extensions of our work might be interesting. So
far we have completely neglected all inelasticities except for
the bond rupture. One expects the collisions at the hard core
to be dissipative as they are in dry granular media. In the
simplest model these could be described by normal restitu-
tion. Furthermore real wet grains experience frictional
forces, coupling translational and rotational motion of the

grains �30�. We are not aware of any such studies for wet
granulates.
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